
SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Embedded Systems
Interrupt and Booting

Peter Thorwartl

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Reducing interrupt
inclusion design time

The Designer’s Challenge
Interrupt

 Accounting for
system interrupt

latency

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

 Describe the interrupt structure of the MicroBlaze™ and PowerPC® processors
 Write an interrupt handler for the targeted processor
 Register the interrupt handler/Interrupt Service Routine (ISR)
 Use an interrupt controller to accommodate multiple interrupts
 Apply proper programming techniques to reduce interrupt latency

After completing this module, you will be able to:

Objectives

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Exceptions

 Exception handling is a programming language construct or computer hardware
mechanism designed to handle the occurrence of some condition that changes
the normal flow of execution

Related to the current program flow
Typically the result of unexpected error conditions (such as a bus error)
Result of illegal operations (guarded memory access)
Some exceptions can be programmed to occur (FIT, PIT)
A software routine could not execute properly (divide by 0)
Handler able to resume execution at the original location

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Hardware Interrupts

 An interrupt is an asynchronous signal from hardware indicating the need for
attention, or a synchronous event in software indicating the need for a change
in execution

Embedded processor peripheral (FIT, PIT, for example)
External bus peripheral (Uart, EMAC, for example)
External interrupts enter via hardware pin(s)
Multiple hardware interrupts can be OR’d or utilize an external interrupt controller

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Exceptions versus Interrupts
 Exceptions are unexpected events typically signaled from within the processor

core
Exception handlers are used to service exceptions
Illegal instructions, OPCODEs, divide by 0, or unaligned data, for example

 Interrupts are a change of control flow typically signaled
from outside the processor core

Interrupt Service Routines (ISRs) are used to handle ints
Critical and non-critical inputs driven by interrupt sources

 According to IBM: an exception is an event that may or may not be processed;
interrupts occur as a result of an exception

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Handlers
 Service both interrupts and exceptions

Current program execution is suspended after the current instruction
Context information is saved so that execution can return to the current program
Execution is transferred to an interrupt handler to service the interrupt
 Interrupt handler must be registered
 Interrupt handler calls an ISR
 For simple situations, the handler and ISR can be combined operations
 Each ISR is unique to the task at hand

– Uart interrupt to process a character
– Divide-by-zero exception to change program flow

When finished
 Normal — returns to point in program where interrupt occurred
 Exception — branches to error recovery

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Types
 Edge-triggered

Parameter: SENSITIVITY
Rising edge, attribute: EDGE_RISING
Falling edge, attribute: EDGE_FALLING
Example

 PORT interrupt = int_signal, DIR = O, SENSITIVITY =
 EDGE_FALLING, SIGIS = INTERRUPT

 Level-triggered
Parameter: SENSITIVITY
High, attribute: LEVEL_HIGH
Low, attribute: LEVEL_LOW
Example

 PORT interrupt = int_signal, DIR = O, SENSITIVITY =
 LEVEL_HIGH, SIGIS = INTERRUPT

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

PowerPC Processor

EXCEPTIONS VECTOR TABLE

Interrupt

PowerPC®
4xx Processor

INTERRUPT
SOURCE

Exception_Handler (handler_arg) {

…
}

handler_arg

Exception_Handler

Two interrupt pins, external and critical

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

PowerPC Processor Interrupts

 Two external inputs to the PowerPC processor core
Critical interrupt
External interrupt
Enabled and disabled through the Machine State Register (MSR)
 MSR(CE) and MSR(EE)
 Default @RESET is disabled

 Interrupt handler exception jump table locates the appropriate handler
Table address in the Exception Vector Prefix Register (EVPR)
BSP has routines to initialize and populate this table

The PPC440 is more customizable. The base of the Exception Vector table is specified with the EVPR. The offset from this base
for each exception type is specified with the IVOR 0-15 registers.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

PowerPC Processor Exception
Mechanism

Entry Point

Save State

Call Handler

Restore State

Return to Program

Exception Code

Registered Handler

HANDLER

Vector table must be aligned at
the 64-kB boundary for PPC405

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

PowerPC Library Support
 Exception library function calls support

void XExc_Init(void);
 Initializes the vector table and default handlers
void XExc_RegisterHandler (Xuint8 ExceptionId, XExceptionHandler Handler,
void *DataPtr);
 Allows the registration of a handler
void XExc_RemoveHandler (Xuint8 ExceptionId);
 Replaces the current handler with a default handler
void XExc_mEnableExceptions (EnableMask);
 Enables critical and noncritical interrupts
void XExc_mDisableExceptions (DisableMask);
 Disables critical and noncritical interrupts

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor

_interrupt_handler

Address 0x10

INTERRUPT
SOURCE

Exception_Handler (handler_arg) {
…
}

MicroBlaze
Processor

INTERRUPT VECTOR TABLE

handler_arg

Exception_Handler

On interrupts, the MicroBlaze processor jumps to address location 0x10. This is part of the C run-time library and contains a
jump to the default interrupt handler (_interrupt_handler).
This function is part of the MicroBlaze processor BSP and is provided by Xilinx. It accesses an interrupt vector table to
determine the name of the interrupt handler for the interrupt source.
The interrupt vector table is a single entry table. The entry is a combination of the ISR and an argument that should be used with
the ISR. This entry can be programmed in the user code.
Functions are provided in the MicroBlaze processor BSP for changing the handler of the interrupt source at run time.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor
Interrupts

 Support for five vectored events
Reset – cold boot
User vector exception – create your own exception
Interrupt – external interrupt input; this is the one of interest for this
module
Break – hardware break inputs and software break instructions
Hardware exception – illegal instruction, data bus error, unaligned access

 All of the above vectored events operate somewhat similarly
See next slide

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor
Interrupts

The MicroBlaze processor supports one external interrupt source (connecting to the interrupt input port). The processor only
reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status Register (MSR) is set to 1. On an interrupt, the
instruction in the execution stage completes, while the instruction in the decode stage is replaced by a branch to the interrupt
vector (address 0x10). The interrupt return address (the PC associated with the instruction in the decode stage at the time of the
interrupt) is automatically loaded into general-purpose register R14. In addition, the processor also disables future interrupts by
clearing the IE bit in the MSR.
Interrupts are ignored by the processor if the Break In Progress (BIP) bit in the MSR register is set to 1.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor
Interrupts

 MicroBlaze processor functions
void microblaze_enable_interrupts(void)
 Enables interrupts on the MicroBlaze processor
 When the MicroBlaze processor starts up, interrupts are disabled. Interrupts must be

explicitly turned on with this function
void microblaze_disable_interrupts(void)
 Disables interrupts on the MicroBlaze processor. This function can be called when

entering a critical section of code where a context switch
is undesirable

void microblaze_register_handler (
 (XExceptionHandler)timer_int_handler, (void *) 0);
 Required for external port interrupt without interrupt controller

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor
Exceptions

 MicroBlaze processor functions
void microblaze_enable_exceptions(void)
 Enables interrupts on the MicroBlaze processor
 When the MicroBlaze processor starts up, interrupts are disabled. Interrupts must be

explicitly turned on with this function
void microblaze_disable_ exceptions(void)
 Disables interrupts on the MicroBlaze processor. This function can be called when

entering a critical section of code where a context switch
is undesirable

void microblaze_register_exception_handler (
 (XExceptionHandler)timer_int_handler, (void *) 0);
 Required for external port interrupt without interrupt controller

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Inclusion
 Requirements for including an interrupt into your application

Write a void software function that services the interrupt
Use the provided device IP routines to facilitate writing the ISR
 Clear interrupt
 Get interrupt status
 Enable/disable interrupt
Register the interrupt handler by using an appropriate function
 Single external interrupt registers with the processor function
 Multiple external interrupts register with the interrupt controller

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Initializing Interrupt
Example: PIT Timer

 When the source of the interrupt or exception is internal to the PowerPC processor, you
should explicitly perform the following tasks (using the PIT timer as an example) in the
main() routine

Initialize an exception in the vector space of the handler
 XExc_Init();
Register the interrupt handler
 XExc_RegisterHandler(XEXC_ID_PIT_INT, (XExceptionHandler) pit_timer_int_handler, (void *) 0);
Initialize and enable the device
 XTime_PITSetInterval(0xffffff00);
 XTime_PITEnableAutoReload();
Arm the device
 XTime_PITEnableInterrupt() ;
Enable PowerPC processor noncritical interrupts
 XExc_mEnableExceptions(XEXC_NON_CRITICAL);

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Initializing Interrupt Example
MicroBlaze Processor + Timer

main() {
Xuint32 k;
// Establish timer operation, set # of cycles TMR0 counts in LOAD reg
XTmrCtr_mSetLoadReg(XPAR_PLB_TIMER_1_BASEADDR, 0, TMR0);
// Reset Timer0 and clear interrupts, variables defined in xtmrctr_l.h
XTmrCtr_mSetControlStatusReg(XPAR_PLB_TIMER_1_BASEADDR,
0,XTC_CSR_INT_OCCURED_MASK | XTC_CSR_LOAD_MASK | XTC_CSR_EXT_GENERATE_MASK);
// register interrupt handler
Microblaze_register_handler((XInterruptHandler) timer_interrupt_handler, (void
*)0);
// Start timer using masks bits defined in xtmctr_l.h library header file
XTmrCtr_mSetControlStatusReg(XPAR_PLB_TIMER_1_BASEADDR, 0,
XTC_CSR_ENABLE_ALL_MASK | XTC_CSR_ENABLE_INT_MASK | XTC_CSR_AUTO_RELOAD_MASK |
XTC_CSR_DOWN_COUNT_MASK);
// Enable microblaze interrupts to turned on interrupt using function
microblaze_enable_interrupts();
// Do other tasks
…
// Disable interrupt when done
microblaze_disable_interrupts():}

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Handler
Software Driver: tmrctr for xps_timer

void timer_int_handler(void * baseaddr_p) {
Xuint32 tcsr_0;

 /* Get timer status register */
 tcsr_0 = XTmrCtr_mGetControlStatusReg(baseaddr_p,0);
 if (tcsr_0 & XTC_CSR_INT_OCCURED_MASK) {
 /* Do what needs to be done if the source
 of interrupt is timer */
 …
 }
 /* Clear the timer interrupt */
 XTmrCtr_mSetControlStatusReg(XPAR_PLB_TIMER_1_BASEADDR, 0, csr);
}

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Multiple External Interrupts

 Direct method – OR all interrupts by using the Utility Reduced Logic core
Minimal hardware
Interrupt service routine must check all possible interrupting sources
Higher latency response time
Not a compatible method with Xilinx IP software drivers

 Interrupt controller – instantiate the XPS interrupt controller
Support up to 32 interrupts
Single interrupt to processor
Compatible with Xilinx IP software drivers
Easy to use

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

XPS Interrupt Controller IP

 XPS interrupt controller: xps_intc
Data bus widths of 8, 16, or 32 bits on the PLB bus
Number of interrupt inputs is configurable up to the width of the data bus
Easily cascadable to provide additional interrupt inputs
Interrupt enable register for selectively disabling individual interrupt inputs
Master enable register for disabling an interrupt request output
Each input is configurable for edge or level sensitivity
Automatic edge synchronization when inputs are configured for edge sensitivity

Each input is configurable for edge or level sensitivity. Edge sensitivity can be configured for rising or falling; level sensitivity
can be active high or low; and automatic edge synchronization when inputs are configured for edge sensitivity.
The output interrupt request pin is configurable for edge or level generation—edge generation configurable for rising or falling
and level generation configurable for active high or low.
The interrupt controller is intended for use in a hard vector interrupt system. It does not directly provide auto-vectoring
capability. However, it does provide a vector number that can be used in a software-based vectoring scheme.
The PLB interface provides a slave interface on the PLB for transferring data between the PLB interrupt controller and the
processor. The PLB interrupt controller registers are memory mapped into the PLB address space and data transfers occur using
PLB byte enables. The register addresses are fixed on four-byte boundaries and the registers and the data transfers to and from
them are always as wide as the data bus.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Controller

INTERRUPT
CONTROLLER

Interrupt_Signal

PORT Irq = Interrupt_Signal

PORT Intr = Priority4 & Priority3 & Priority2 & Priority1

UART

Ethernet MAC

Timer

System ACE™
Technology

Priority 1

Priority 2

Priority 3

Priority 4

Intr

CPU

PORT EICC440CRITINPUTIRQ = Interrupt Signal (PowerPC processor)
PORT EICC440EXTINPUTIRQ = Interrupt Signal (PowerPC processor)
PORT Interrupt = Interrupt_Signal (MicroBlaze processor)

When the project is created by Base System Builder, it always includes an interrupt controller even if there is only one
interrupting source.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

When Interrupt Occurs

SysAce_Handler () {

…
}

Timer_Handler () {

…
}

Uart_Handler () {

…
}

Ethernet_Handler () {

…
}

Uart_Handler

Ethernet_Handler

Timer_Handler

SysAce_Handler

VECTOR TABLE

Interrupt

INTERRUPT
CONTROLLER

XIntc_DeviceInterrupt
Handler

Interrupt Controller
Handler

PROCESSOR

Intc_DeviceID

XIntc_DeviceInterrupt
Handler

EXCEPTION TABLE

On interrupts, the MicroBlaze processor jumps to the handler (XIntc_DeviceInterruptHandler) of the interrupt controller
peripheral by using the interrupt vector table. LibGen automatically registers the handler of the interrupt controller peripheral in
the interrupt vector table. The interrupt controller handler services each interrupt signal that is active, starting from the highest
priority signal. Each of the peripheral interrupt signals needs to be associated with an interrupt.
Handler routine (also called the Interrupt Service Routine): The interrupt controller handler uses a vector table to store those
routines corresponding to each of the interrupt signals. If an interrupt is active, the interrupt controller handler calls the routine
corresponding to it. An argument can be associated with such routines and is passed when calling the routine. LibGen
automatically generates the vector table used by the interrupt controller handler.
The association of an ISR for a peripheral interrupt signal can be done either in the Microprocessor Software Specifications
(MSS) file or registered at run time by using the function provided by the interrupt controller driver (XIntc_Connect,
XIntc_RegisterHandler). These functions work on the vector table generated by LibGen. For more information on the exact
prototype of these functions, refer to the Device Drivers documentation.
If the ISRs are specified in the MSS file, LibGen automatically registers these routines with the vector table of the interrupt
controller driver listed in the order of priority. The base address of the peripherals is registered as the arguments to be passed to
the ISR in the vector table.
For the PowerPC processor, apart from the registering of the handler with the exception table, the rest of the processing is
similar to the MicroBlaze processor.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Controller Software
Requirements

 Interrupt controller requirements
Register the controller with the processor registration function
Initialize the interrupt control
Register the ISR for each of the external inputs with the interrupt controller
Set the interrupt controller options
Start the interrupt controller

These are the steps you perform to enable interrupts.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Handler Registration
 The interrupt handler is registered through interrupt controller

driver functions (IP name: xps_intc or dcr_intc)
XIntc_RegisterHandler or XIntc_Connect and XIntc_Initialize
functions

XIntc_RegisterHandler (XPAR_PLB_INTC_0_BASEADDR,
XPAR_PLB_INTC_0_MYUART_INTERRUPT_INTR,
(XInterruptHandler) uart_int_handler,
(void *)XPAR_MYUART_BASEADDR);

OR

XIntc_Initialize (&Intc, XPAR_PLB_INTC_0_DEVICE_ID);
XIntc_Connect (&Intc, XPAR_PLB_INTC_0_MYUART_INTERRUPT_INTR,

(XInterruptHandler) uart_int_handler,
(void *) XPAR_MYUART_BASEADDR);

Level 0

Level 1

xparameters.h

There are two methods for registering an interrupt handler. One method is to use the XIntc_RegisterHandler function, which
requires the base address of the interrupt controller, the interrupt request, the name of the interrupt handler, and the base address
of the interrupt requesting device. The other method is to use two functions: XIntc_Initialize and XIntc_Connect.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Interrupt Considerations

 Interrupts are considered asynchronous events
Know the nature of your interrupt
 Edge or level
 How the the interrupt is cleared
 What happens if another event occurs while the interrupt is asserted?
How frequent can the interrupt event occur?

 Can the system tolerate missing an interrupt?

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

ISR Considerations
 Timing

What is the latency from the hardware to the ISR?
 Operating system can aggravate this
 Are the interrupts prioritized?
How long can the ISR be active before affecting other things in the system?

 Can the ISR be interrupted?
If so, code must be written to be reentrant
A practice to be avoided

 Code portability
Compatible with MicroBlaze and PowerPC processors
Are operating system hooks needed?

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

ISR Tips and Tricks
 Keep the code short and simple; ISRs can be difficult to debug
 Do not allow other interrupts while in the ISR

This is a system design consideration and not a recommended practice
Use interrupt priority when using an interrupt controller

 Time is of the essence!
Spend as little time as possible in the ISR
Do not perform tasks that can be done in the background
Use flags to signal background functions

 Make use of the callback argument passed in registration
 Make use of provided interrupt support functions when using IP drivers
 Do not forget to enable interrupts when leaving the handler/ISR

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Guidelines for Writing a Good
Interrupt Handler

 Keep the interrupt handler code brief (in time)
Avoid loops (especially open-ended while statements)

 Keep the interrupt handler simple
Interrupt handlers can be very difficult to debug

 Disable interrupts as they occur
Re-enable the interrupt as you exit the handler

 Budget your time
Interrupts are never implemented for fun—they are required to meet a specified
response time
Predict how often an interrupt is going to occur and how much time your interrupt
handler takes
Spending your time in an interrupt handler increases the risk that you may miss
another interrupt

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

A Poor Interrupt Handler

 Task: Compute the average of the data samples when the user pushes a button
(the source of the interrupt)

Void badInterruptHandler(void) {
int numberOfPiecesOfData = globalStoredCount;
int sum = 0;
while (numberOfPiecesOfData--) {
Sum += globalDataStorage[numberOfPiecesOfData];
}
globalAverage = sum / globalStoredCount
}

The amount of time that this interrupt routine takes to run is non-deterministic. If there is only a few pieces of data, then this
might run quickly, which is good. If there is a large amount of data, then this routine takes much longer, which is bad. If there is
no data, then this routine will take the maximum amount of time (counting down from 2^32 – 1 to 0 or about 4 billion), which is
terrible.
There is no protection if globalStoredCount is 0 (this will throw a divide by zero error).
There is excessive use of global variables. The side effects could be horrendous. Use of global variables in this case violates
reentrancy rules.
If the processor allows interrupts during the handling of an existing interrupt, conflicts with global variables will occur. Review
reentrancy rules.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

A Better Interrupt Handler

 Task: Compute the average of the data samples when the user pushes a button (the source of
the interrupt)

Void betterInterruptHandler(void) {
disableProcessorInterrupts();
globalButtonPushed++;
enableProcessorInterrupts();
}
 In the main code
If (globalButtonPushed > 1) {
// this indicates that the button was pushed more than once before this portion of the
// code had a chance to work on it. This might be due to ringing in the button, or an
// overly long process preventing this portion of the code to be reached in a timely fashion
}
If (globalButtonPushed) {
globalButtonPushed = 0; // clear the flag
// compute the average
…
}

This interrupt handler is much safer than the previous example because:
• Processor interrupts are disabled on entry and re-enabled on exit, which prevents the interrupt handler from being

interrupted.
• A global flag is set that can be monitored by the main loop.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Summary

 An interrupt controller is not required when the number of interrupt sources is
less than or equal to the number of interrupt pins on the CPU

 An interrupt controller supports up to 32 interrupt sources and provides a
means for assigning priority

 Interrupt handlers are required to perform the desired task when the interrupt
occurs. They must be registered through explicit execution of a register handler
function

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

What is the best boot option?

The Designer's Challenge
Download and Boot

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

 Describe bootload options
 Identify the bootload sequence
 Describe the program load requirements between off-FPGA devices and block

RAM
 Use XMD for loading memory and simple program control
 Understand the use of bootloops for debugger control
 Write a program to bootload from off-FPGA flash or another peripheral

Objectives

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Microprocessor Boot

 Microprocessors do not start from main{}
 The boot process ends with a call to main{}
 The boot program is automatically included during the compile, link, locate, and

generate ELF file process, Build All User Applications
Boot code provided
Guided by linker script defaults

 Boot process is a processor dependent operation
Microblaze™ processor
Power PC® processor

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

 Memory and peripherals
The MicroBlaze processor uses
32-bit addresses

 Special addresses
Each vector consists of two instructions,
an IMM, followed by a BRAI instruction, to
address full memory range
MicroBlaze processors must have
user-writable memory from
0x00000000 through 0x0000004F

0x0000_0000
0x0000_0008
0x0000_0010

0xFFFF_FFFF

0x0000_0018

Reset Address
Exception Address
Interrupt Address

LMB Memory

Reserved

PLB Memory

Peripherals

0x0000_0020
0x0000_0028
0x0000_004F

Break
Hardware Exception

MicroBlaze Processor Memory
Space

The actual address map is defined in the Microprocessor Hardware Specification (MHS) file, which contains an address map
that specifies the addresses of LMB memory, PLB memory, and external memory and peripherals. The address range grows
from 0. The lowest range is the LMB memory. This is followed by the PLB memory, the external memory, and the peripherals.
Some addresses in this address space have predefined meaning. The processor jumps to address:
•0x0 on reset
•0x8 on exception
•0x10 on interrupt
•0x18 on nonmaskable maskable hardware and software break
•0x20 on hardware exceptions
Each vector allocates two addresses to allow full address range branching (requires an IMM followed by a BRAI instruction).
Register R14 is used to save return addresses on interrupt, R16 on break, and R17 on hardware exception. The address range
0x28 to 0x4F is reserved for future software support by Xilinx.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

PowerPC Processor
Memory Space

 Memory and peripherals
The PowerPC® 440 processor uses
32-bit addresses

 Special addresses
Every PowerPC processor system
should have the boot section
starting at 0xFFFFFFFC
The default program space occupies
a contiguous address space
from 0xFFFF0000 to 0xFFFFFFFF
If interrupt handlers are present, the
vector table must start at the 64K boundary

0x0000_0000

0xFFFF_0000

0xFFFF_FFFC

Peripherals

PLB Memory

PLB Memory
Reset Address

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Boot Options

XPS provides three boot options
 Bootloops

 Extra XmdStub debug boot option for the MicroBlaze processor
 Boot to main{}

 Right-click the software application project and select Mark to Initialize BRAMs
 Custom boot

 Requires user-provided code
 Possible customization of linker script
 U-boot is a free, customizable bootloader
 OS boot provided by a third-party

Initializing the operating system is provided by the OS provider, such as MontaVista, Wind River Systems, or DENX. If you
write your own operating system, or customize one from an open source, then you write the initialization code.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Bootloop

 Used for debugging only!
 Keeps the processor busy after reset

until the debugger can take over
 Basically a “branch to *”

Infinite loop
Debugger halts processor and
reloads program memory

 Engaged by right-clicking and selecting
Mark to Initialize BRAMs

Selects bootloop program to compile
Inserted into boot block RAM by data2mem, the Update Bitstream command

Note to Facilitator: The asterisk is an assembly language notation that indicates the current program counter location.
Effectively, this is a loopback to the current location.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

SDK Bootloop Options

 The bootloop program will provide a place holder for the processor to do a
“branch to *” when the FPGA comes out of configuration

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor Bootloop
– MDM

 Infinite loop bootloop is selected when the hardware MicroBlaze Debug
Module (MDM) is used

The hardware MDM can halt or control the MicroBlaze processor
Recommended debug flow
The MicroBlaze processor bootloop program stored at address 0x00000000

 _boot: bri 0

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

PowerPC Processor Bootloop
 The PowerPC processor always

uses an infinite loop bootloop as
required by the PPC hardware
debug module

 The bootloop code is simple
_boot: b _boot

 The code resides at 0xfffffffc, the
PowerPC processor reset vector

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Boot to Main
 This option is the normal run mode

that performs the typical boot
sequence and starts executing the
user application at main{}

 Right-click the project and select
Mark to Initialize BRAMs

 Only one project can be active at
a time; notice the red Xs on the
unselected software projects

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Custom Boot Options

 Used when it is not desirable to start a user application at main{}
Operating systems
Non-block RAM boot, such as boot from flash

 There will be two application projects, files, linker scripts, and ELF files
Target application, including operating system executing in off-FPGA RAM
Bootload application that will execute from the processor reset vector

 Requires a custom boot file to replace crt0.s
 May require a custom linker script

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Initialization Requirements
 Initialize various control registers
 Invalidate caches
 Initialize on-core elements

Timers
MMU
Debug facilities

 Initialize off-core elements
 Start OS or application code
 Details available in Chapter 10 of the PowerPC Processor Reference Guide
 For the PowerPC 440 processor, the Xilinx boot creates a real address mode

environment

Code automatically
generated by EDK
and placed in boot

routine

The PowerPC 440 processor does not support real memory mode. Thus, the Xilinx boot includes MMU initialization to create a
real mode mapping off memory at bootload.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

 Files: boot.S, boot0.S, crt0.S, eabi.S
Application entry point at label _boot in
boot.S
_boot is single jump instruction to _boot0
_boot0 is a few instructions that do a
jump to _start in crt0.S
Requires emulated real mode
_start
 Clears .bss and .sbss sections
 Sets up stack on an eight-byte alignment
 Initializes time-base registers to zero
 Optionally, enable FPU bit in the MSR
 Calls main()

– Calls _eabi to set R13 and R2 registers to point to the .sdata and .sdata2 sections,
respectively

– Performs user tasks

PowerPC Boot Files

The boot.S, crt0.S, and eabi.S files contain a minimal set of code for initializing the processor and starting an application.
boot.S: Code in the boot.S file consists of the boot and boot0 sections. The boot section contains only one instruction, which is
labeled with _boot. During the link process, this instruction is mapped to the reset vector, and the _boot label marks the
application’s entry point. The boot instruction is a jump to the _boot0 label. The _boot0 label must reside within a 23-bit
address space of the _boot label. It is defined in the boot0 section. The code in the boot0 section calculates the 32-bit address of
the _start label and jumps to it.
crt0.S: Code in the crt0.S file starts executing at the _start label. It initializes the .sbss and .bss sections to zero, as required by
the ANSI C specification, sets up the stack, initializes some processor registers, and calls the main() function. The program
remains in an endless loop on return from main().
eabi.S: When an application is compiled and linked with the -msdata=eabi option, GCC inserts a call to the __eabi label at the
beginning of the main() function. This is the place where register R13 must be set to point to the .sdata and .sbss data sections
and register R2 must be set to point to the .sdata2 read-only data section. Code in the eabi.S file sets these two registers to the
correct values. The _SDA_BASE_ and _SDA2_BASE_ labels are generated by the linker.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor
Boot File

 File: crt0.S
Application entry point at label _start
Called from reset vector at 0x00000000
_start
 Set up required resets, interrupts, and exception vectors
 Set up stack pointer, small data anchors, and other registers
 Clear the BSS memory regions to zero
 Invoke language initialization functions
 Initialize interrupt handler and the hardware subsystem
 Set up arguments for the main procedure
 Call main()

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

MicroBlaze Processor System
Address Space

 System with an executable only (no XmdStub debug)
or with hardware MDM instantiated

The C run-time file crt0.o is linked
with the user program
The system file crt0.o starts
at address location 0x50,
immediately followed by the user program
crt0.o source located in

 ../EDK/sw/lib/microblaze/src/crt0.s
Automatically linked in with selection of the
XPS software project

crt0.o

main
program

0x00000050

Initialization files, such as crt0.o, are searched by the compiler only for mb-gcc. For powerpc-eabi-gcc, the C run-time library is
a part of the library and is picked up by default from the libxil.a library.
This initialization file is used for programs which are to be executed in standalone mode without the use of any bootloader or
debugging stubs, such as xmdstub. This CRT populates the reset, interrupt, exception, and hardware exception vectors and
invokes the second stage startup routine _crtinit. On returning from _crtinit, it ends the program by infinitely looping in the exit
label.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Programming Loading
Requirements

Bootloader to copy the program from another sourceLarge applications that cannot fit
into block RAM and execute from
external RAM (DDR2)

Have their own proprietary requirements; typically
handled by their installed control of LibGen to build
the BSP, compile, and link

Operating systems

Right-click the project and select Mark to Initialize
BRAMs and then run the Update Bitstream
command

Standalone user application that
resides in block RAM

RequirementsSoftware

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Alternative Boot Options
 Flash memory technology

Parallel flash – requires an External Memory Controller (EMC)
Compact Flash (CF) – requires a System ACE™ technology chip
SPI flash – requires the XPS_SPI_Interface controller

 Bus hardware boot options – secondary, follow-on boot
Serial using Uartlite
Ethernet

 Boot program is typically located in block RAM
Copies the application from the boot device to main system memory
When finished, turns control over to the new memory image

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Parallel Flash Memory Boot
• Xilinx Platform Studio provides a Program

Flash Memory dialog box for
programming flash devices within XPS

• Supports flash devices that support Intel
command sets

• Supports most all physical flash
arrangements

• Supports an executable file as an input
format and provides the option of
converting it into SREC format

• Supports flash bootloader creation
• Flash devices interface through the

EMC peripheral
• Requires XMD to execute a Tcl file

to perform programming and
verification functions

SREC refers to the Motorola S-Record file format, and is a standard for representing memory data and regions as ASCII text.
The SREC format has several advantages over binary formats. The ASCII encoding allows the files to be edited with a text
editor. Also, each record contains a checksum to identify data that has been corrupted during transmission.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

 Object file to be programmed
 Object in ELF or SREC format
 Hardware instance of flash memory

Base address, size, and data width
automatically determined from the
MHS file

 Storage offset from beginning of
flash memory – multiple images!

 Programming scratchpad RAM is
required

 Separate block RAM bootload
application can automatically be created

Flash Writer Utility

In the Xilinx Platform Studio Program Flash Memory dialog box, you can:
•Select the image to store on flash (ELF or SREC)
•Set the file format conversion if the source file is in ELF format
•Select the flash programming mode
•Select a processor instance in the design
•Select the flash memory and offset
•Select a section of memory in the design as scratch memory; must be at least 32 kB
•Select the bootloader creation flag if desired. You can have multiple bootloader applications in the Application tab, depending on how many different
programs have been flashed—each starting at different addresses in flash. Make sure that only one bootloader application is marked to initialize block RAM
when using to bootload the system.
Supported flash configurations:
•Single 16-bit device forming a 16-bit data bus
•Paired 8-bit devices forming a 16-bit data bus
•Single 32-bit device forming a 32-bit data bus
•Paired 16-bit devices forming a 32-bit data bus
•Four 8-bit devices forming a 32-bit data bus
Support for command sets for the following devices:
•Intel/Sharp extended command set
•AMD/Fujitsu standard command set
•Intel standard command set
•AMD/Fujitsu extended command set

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Flash Writer Setup

Parallel Flash Procedure
1. Debug the application in the external memory in which it will execute

a. Set the linker script regions to external RAM
b. Leave the boot sector in block RAM
c. GDB debugger will load program into off-FPGA RAM

2. Fill in the Program Flash Memory dialog box
• Select application
• Select Create Flash Bootloader Application
• Make sure download cable and target hardware are ready
• Select OK to program flash

• Right-click the bootload_0 application and select Mark to Initialize BRAMs
• Edit the bootloader.c file in the application to change bootload behavior or

messages

The bootloader.c file outputs to the standard out UART peripheral as it is executing.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

System ACE
 A two-chip solution requiring

System ACE technology Compact Flash (CF) controller and
 Either a CF card or 1-inch microdrive disk drive

 Use it to
Configure the FPGA
Initialize block RAM
Initialize external memory with a valid program or data
Boot up the processor in an end-product system

 At power-on, the System ACE technology controller uses an ACE file in boot
media to configure the FPGA and download programs

 Generate configuration files using FPGA bitstream and ELF/data files
genace.tcl
MicroBlaze Debug Module (MDM)

On power on, the System ACE technology controller looks for an ACE file in the Xilinx.sys directory on the boot media,
configures the FPGA, and downloads any programs into memory.
Configuration files must be generated using FPGA bitstream and ELF/data files. EDK provides a Tcl script (genace.tcl), which
uses XMD commands for this purpose. MicroBlaze-processor systems must use the MDM.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

genace.tcl Script
 The genace.tcl script uses XMD commands to generate ACE files
 Using a script, you can generate files for software and hardware systems in a

Serial Vector Format (SVF) file
 The SVF file is converted to an ACE file and written to the storage medium
 The ACE file can be copied to the CF card from a desktop PC or via the JTAG

download cable
 The script can be called from the Xygwin shell with following syntax

xmd -tcl genace.tcl [-opt <genace_options_file>] [-jprog] [-target <target_type>]
[-hw <bitstream_file] [-elf <elf_files>] [-data <data_files>] [-board
<board_type>] -ace <ACE_file>

GenACE options include:
-opt: GenACE options are read from the options file.
-jprog: Clear the existing FPGA configuration. This option should not be specified if you are performing run-time
configuration.
-target: Target to use in the system for downloading the ELF/data file. Target types are: ppc_hw and mdm
-hw: The bitstream file for the system. If an SVF file is specified, the SVF file is used.
-elf: List of data/binary file and its load address. The load address can be in decimal or hex format (0x prefix needed). If an SVF
file is specified, it is used.
-data: This identifies the JTAG chain on the board (devices, IR length, or debug device, for example). The options are given
with respect to the System ACE technology interface controller.
-board: The script contains options for some pre-defined boards. Board type options are: ml300 - ml300 board with the
Virtex2P7 device; memec - Memec board with the Virtex2P4 device and P160; mbdemo - Xilinx MicroBlaze processor demo
board Virtex 21000 device; and auto - Auto Detect Scan Chain and form options for any generic board. The board should be
connected for this option. The GenACE options are written out as a genace.opt file. The user can use this file to generate an
ACE file for the given system, user. The user specifies the -configdevice and -debugdevice option in the Options file.
-ace: The output ACE file. The file prefix should not match any of the input files (bitstream, ELF, data files) prefix.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

SPI Flash
 The Virtex®-5 and the Spartan®-3E (A and AN) family provide for configuration from

SPI flash memory
 If the SPI flash memory is larger than needed for the bit file, the additional space can be

used for software applications
 The SPI memory is serial in nature; therefore, an SPI controller must be instantiated in

hardware to read (and write, if desired) the software application
 A bootload program, located in block RAM, must be written to read the SPI flash and

write out to external RAM
 Xilinx provides a separate XSPI suite of programs to program an SPI flash memory

device via the JTAG download cable
Provide a facility to merge multiple Intel Hex (MCS) files, either BIT or program files
Provide SPI flash utilities, such as erase, program, and verify

The iMPACT software utility included with the ISE software allows the designer to perform program, erase, and verify
operations to the SPI flash memory after it has been soldered to the PCB via a USB platform cable and a PC. The iMPACT
software supports only select SPI flash memory families from Numonyx and Atmel. See the iMPACT software for the list of
supported devices.
Spartan-3 AN FPGA flash:
•Resident internal SPI flash for configuration and software applications; a single-chip solution
•Supported in hardware with XPS_SPI_Interface
•Supported in BSP with the XILISP library (read/write SPI flash; initialize, erase, and other utilities)
•Bootload program support
•Application programs data into the flash memory either directly to the main flash memory array or through one of the SRAM
page buffers
For more information about SPI Flash memory programming, see:
•Application Note XAPP1034: Reference System: Accessing Spartan-3AN In-System Flash Using XPS
•Application Note XAPP1053, Flash Memory Bootloading Using SPI with Spartan-3A DSP 1800A Starter Platform
•Application Note XAPP800, Configuring Xilinx FPGAs with SPI Flash Memories Using CoolRunner-II CPLDs
•Spartan-3AN In-System Flash User Guide (www.xilinx.com/support/documentation/user_guides/ug333.pdf)

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

XMD

 The XMD utility provides for a variety of user debug services
Physical connection between your workstation and the software design
Connection to an internal BSCAN controller
Program download
Processor identification and control
Low-level debug commands
Interface to the GNU debugger
General Tcl interface

 XMD is started after the FPGA has been configured via the Download
Bitstream command

For more information, see the GDB documentation for downloading, running, and debugging.
Note: GDB requires XMD to be running in order to provide a connection to the hardware and software.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Setting XMD Options
 XMD accommodates various functions

Software simulator for the
MicroBlaze processor*
Connection to hardware via a JTAG
cable
XMDstub, a software intrusive
debugger

 Download cable support
Parallel and USB
Auto is a good selection

 JTAG chain
Support for custom devices
Auto is also a good selection

*The PowerPC processor simulator is available through the SDK.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Launching XMD
 Once launched, XMD looks for

the download cable and a
hardware target on the other
side of the cable

 The console screen to the right,
shows detection of a USB cable
and discovery of three Xilinx parts

 The XMD% command prompt
awaits the user to enter
commands

 Multiple XMD sessions can be
opened simultaneously

Popular XMD commands for boot and program control include:
•connect – connect to the MicroBlaze or PowerPC processor debug module
•dow – download the ELF executable file
•elf_verify – verify the ELF file with memory image
•run – begin program execution from reset
•con – continue program execution from the current program counter
•stop – stop the target processor
•exit – close the XMD window
XMD will search for a processor when started. The connect command will execute automatically and the software application
in block RAM will begin to execute.
Remember to first download the bit file via the Download Bitstream command to configure the FPGA before starting XMD.

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Summary

 Smaller target software application program projects that reside entirely in
FPGA block RAM boot and execute normally when the project is marked to
initialize block RAM

 Bootloops are used to maintain processor behavior until the debugger can take
control

 Processor reset vectors must have a boot instruction in place. This is typically
handled by the tools and resides in block RAM

 C programs require that the processor environment is set up before beginning
to execute main{}. This is accomplished automatically by the tools with the
inclusion of the crt0.o module

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Apply Your Knowledge

Q1) What does a linker script do?

Q2) How do you generate a linker script?

Q3) When do you need to write your own linker script?

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Apply Your Knowledge

Q4) Describe the steps involved when registering a single interrupt source

Q5) Describe the steps involved when registering multiple interrupt sources
with an interrupt controller

SO-LOGIC electronic consulting Lustkandlg 52, Vienna, Austria, Europe, World www.so-logic.net +43-1-315 77 77

04_so_emb_interrupts_booting.odp Date Oct 31, 2009 Page

Apply Your Knowledge

Q6) What is the bootloop program and why is it used?

Q7) What is the bootload process by which a software application executes
from off-chip DDR2 RAM, but the application itself resides in off-chip
parallel flash?

